Group V secretory phospholipase A2-modified low density lipoprotein promotes foam cell formation by a SR-A- and CD36-independent process that involves cellular proteoglycans.
نویسندگان
چکیده
Accumulating evidence indicates that secretory phospholipase A2 (sPLA2) enzymes promote atherogenic processes. We have previously showed the presence of Group V sPLA2 (GV sPLA2) in human and mouse atherosclerotic lesions, its hydrolysis of low density lipoprotein (LDL) particles, and the ability of GV sPLA2-modified LDL (GV-LDL) to induce macrophage foam cell formation in vitro. The goal of this study was to investigate the mechanisms involved in macrophage uptake of GV-LDL. Peritoneal macrophages from C57BL/6 mice (wild type (WT)), C57BL/6 mice deficient in LDL receptor (LDLR-/-), or SR-A and CD36 (DKO) were treated with control LDL, GV-LDL, oxidized LDL (ox-LDL) or LDL aggregated by vortexing (vx-LDL). As expected, ox-LDL induced significantly more cholesterol ester accumulation in WT and LDLR-/- compared with DKO macrophages. In contrast, there was no difference in the accumulation of GV-LDL or vx-LDL in the three cell types. 125I-ox-LDL exhibited high affinity, saturable binding to WT cells that was significantly reduced in DKO cells. Vx-LDL and GV-LDL showed low affinity, non-saturable binding that was similar for both cell types, and significantly higher compared with control LDL. GV-LDL degradation in WT and DKO cells was similar. Analyses by confocal microscopy indicated a distinct intracellular distribution of Alexa-568-labeled GV-LDL and Alexa-488-labeled ox-LDL. Uptake of GV-LDL (but not ox-LDL or vx-LDL) was significantly reduced in cells preincubated with heparin or NaClO3, suggesting a role for proteoglycans in GV-LDL uptake. Our data point to a physiological modification of LDL that has the potential to promote macrophage foam cell formation independent of scavenger receptors.
منابع مشابه
Syndecan-4 mediates macrophage uptake of group V secretory phospholipase A2-modified LDL.
We previously reported that LDL modified by group V secretory phospholipase A2 (GV-LDL) promotes macrophage foam cell formation through a mechanism independent of scavenger receptors SR-A and CD36, and dependent on cellular proteoglycans. This study investigates the role of syndecans, a family of cell surface proteoglycans known to mediate endocytosis through macropinocytosis, in macrophage upt...
متن کاملCompare the Effect of Eicosapentaenoic Acid and Oxidized Low-Density Lipoprotein on the Expression of CD36 and Peroxisome Proliferator-Activated Receptor Gamma
Background: There is evidence that CD36 promotes foam cell formation through internalizing oxidized LDL (ox-LDL) into macrophages therefore, it plays a key role in pathogenesis of atherosclerosis. In addition, CD36 expression seems to be mediated by nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ). The aim of the present study was to evaluate and compare the effect of ...
متن کاملGroup V sPLA2 hydrolysis of low-density lipoprotein results in spontaneous particle aggregation and promotes macrophage foam cell formation.
OBJECTIVE Secretory phospholipase A2 (sPLA2) enzymes hydrolyze the sn-2 fatty acyl ester bond of phospholipids to produce a free fatty acid and a lysophospholid. Group V sPLA2 is expressed in cultured macrophage cells and has high affinity for phosphatidyl choline-containing substrates. The present study assesses the presence of group V sPLA2 in human and mouse atherosclerotic lesions and its a...
متن کاملThe secretory phospholipase A2 group IIA: a missing link between inflammation, activated renin-angiotensin system, and atherogenesis?
Inflammation, lipid peroxidation and chronic activation of the renin-angiotensin system (RAS) are hallmarks of the development of atherosclerosis. Recent studies have suggested the involvement of the pro-inflammatory secretory phospholipase A(2) (sPLA(2))-IIA in atherogenesis. This enzyme is produced by different cell types through stimulation by pro-inflammatory cytokines. It is detectable in ...
متن کاملPossible Regulation of Platelets by Native and Modified Low Density Lipoprotein-Cholesterol Particles
An excess number of low density lipoprotein-cholesterol (LDL-C) particles is an independent risk for a cardiovascular event in the future. LDL particles diffused into the developing atherosclerotic plaques bind to proteoglycans in the intima, become oxidized and phagocytosed to macrophages. This causes the generation of foam cells, which aggravate the generation of fatty streaks and induce plat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 38 شماره
صفحات -
تاریخ انتشار 2005